Neural Tanks
by 

Eddie O'Hagan
Table of Contents
· Introduction___________________________________3

· Neural Networking _____________________________4

· What is Neural Networking  ___________________4

· Neurons   __________________________________5

· Neural Layers    _____________________________9

· Neural Networks   ___________________________9

· Genetic Algorithms __________________________22

· Game Design Document (GDD)___________________34

· Additional Information __________________________46

· Glossary  _____________________________________48

· Works Cited___________________________________52
Introduction

Hello and welcome, This document includes information about Neural Networking, The Neural Tanks Game Design Document, and additional information about implementations and technical details.

I wanted to start learning more about Neural Networking and how I can potentially use it in a video game. I found these amazing tutorials from ai-junkie.com on Neural Networking and how to create a simple Neural Network. From there, they also provide a tutorial called Smart Sweepers. Smart Sweepers is a graphical simulation of minesweepers (squares) picking up mines (dots in the world). The sweepers then learn how to navigate the world based on how well each other does. If one sweeper is having more success, all the sweepers will start to take traits from the more successful sweepers (the more mines you pick up in a round, the higher your score). 

I wanted to take this a step further and develop a game using ideas I learned from the Neural Networking tutorials and make a game. I decided to make a 3D Tank game in Unreal Engine 4. The tanks use a Neural Network to determine how much force to apply to the left or right track (to make the go more left or right). Over time, the tanks learn, and become more and more efficient navigating toward the targets (tank ammo).

Once again, a special thanks to Mat Buckland for providing a fantastic source of information about Neural Networking and how it can be adapted for many purposes. The Neural Networking report I wrote below is written based on notes I wrote for myself while following the ai-junkie.com tutorials. I strongly encourage you, yes you, to go to the links provided (see works cited) and follow the tutorials. It was a really fun coding journey if you are looking for something to learn. 
Neural Networking


What is Neural Networking? Well its a big question, so where do we start? Lets take a look at a regular program/application/game, we have logic in our code that says if something happens, then do this. This is the most basic form of logic in computers but its very powerful. The downside is, have to put that logic in by hand for whatever we are making program/application/game we are making. So in the case of a game with tanks, we would have to make the behavior for "if the tank is sees the player, start chasing, if it sees a mine, go to mine, etc". It is also ridged, so the tank will never find a better route or more efficent way if it is always following the same logic.


What if instead of all of that, we create an aritifical brain that makes the decisions for us? In the case of Neural Tanks, each tank has an artificial brain. The tanks will first start off "dumb" and may spin around in place. However, some of the tanks that are succeeding in picking up mine will have their traits passed on to the next generation. If we leave this simulation running overnight, we will see the tanks became very efficent at picking up mines. If we leave it running long enough, we will see the tanks eventaully solve for the best possible technique in picking up the mines. This "artificial brain" is a Neural Network. Since we are making an "artificial brain", it makes sense to try and replicate a biological brain in our code. But where do we start? Sometimes we can look to nature to see how it has solved problems and see if we can adapt the idea to our needs.


Our brain is essentally a huge network of billions and billons of tiny cells called neurons. All of these neurons are connected to each other by dendrites. Each of these dendrites have a receptor for reciving a signal, these receptors are called a synapse. Take a look at the below image to see what a neuron and it's components might look like: 
[image: image1.jpg]Neuron Forming a Chemical Synapse

o syrapses
& (irom ifforent
erve corts

T
myelin
sheath

dendrites
nerve cell body

nucleus




[1]

Here we can see a single neuron along with it's dendrites. Each neuron is connected to each other with these dendrites (and axons). Each of the dendrites has its own synapse which can detect input. Notice that the neuron only has one axon. In other words; the neuron can take in multiple inputs but returns a single output. The number of neurons a neural network has along with the number of inputs, are all dependent on the specific project/task. There are billions of different ways to connect neurons to each other and create a neural network. One of the most common ways to create a neural network is called a feedforward network. A Feedforward network is a neural network that transmits data in one direction, from input to output, and does not have feedback loops. 

For our purposes, the neuron will sum up the inputs in some way. If the calculated sum is greater then the neuron's threshold value, the neuron “fires”. When the neuron fires, it produces a voltage along it's axon. 

Now you can see why it's called a Neural Network; because its a Network of Neurons (thanks Eddie, that really clears things up). Like we were saying before, we can take what we see in nature and try to adapt it for our needs. Lets take a look at an artificial neuron:
[image: image2.jpg]Artificial Neuron

Inputs Output





[2]


As you can see, the artificial neuron has multiple inputs, a nucleus (the blue circle), and the output. Each of the inputs also has its own weight (the red circles) associated with it, this weight is simply a floating point number like 6.9420. During the training of the network, these weights will be modified. The weight values can be positive or negative. Each of the inputs is multiplied by its corresponding weight, and then passed to the nucleus. The nucleus adds up all the updated input values and produces an activation value. The activation is just another floating point number that can be positive or negative.

Now that we have the activation value, we can determine the output depending on this neuron's threshold value. For example, lets say this neuron's threshold value is 1, then if the activation value is greater then 1 (the threshold value), the neuron outputs a 1. If the activation value is less than the threshold, the neuron outputs 0. This process is also known as a step function.
[3][image: image3.png]output

activation






We can actually leverage some math to help us formalize what is happening above. As we mentioned before, a neuron can have any number of inputs. It can have anywhere from 1 input, to N number of inputs (N being whatever number you want).

Lets represent a single input to a neuron as X. So the first neuron input is X1,  the second input being X2, the third input being X3, and so on until XN. We can also represent the corresponding weights the same way, we will use W for the weight. So the weight for input 1 (X1) would be W1 the second weight being W2 , and so on until WN.  Lets also represent the the activation value with A (remember the activation value is the value calculated by the neuron before the step/threshold function).

Using the above information, we can formulate our neuron with math like this:
A = X1*W1 + X2*W2 + X3*W3 + … + XN*WN

Or more formally:

[4][image: image4.jpg]Artificial Neuron

— Output






Here is a diagram showing the neuron with everything we spoke about so far. After the activation is calculated in the nucleus (the blue circle in diagram [2] and [5]), the step function is applied to see if the activation is above/below the neuon's threshold, and if so, output a 1 or 0 (Activated or Not Activated). 
[5][image: image5.emf]

“This is all very interesting Eddie, but how how we actually use these neurons in practice?” If we have a collection of neurons, we can create a neural layer, and with a collection of neural layers, we have a neural network. Lets look at how to configure a feedforward neural network, below is a simple diagram of one:
[6][image: image6.jpg]




As you can see, each one of the inputs is passed to every neuron in the hidden layer. Then from the hidden layer, the output of each neuron is then passed to every neuron in the next layer, and so on. You can have any number of hidden layers as you want in a neural network, but usually one is enough. In addition to the having any number of hidden layers, each row in the layer can have any number of neurons. 

Lets finally talk about a practical example. One of the most popular uses of neural networking is doing character recognition. For example, if we take a picture of text from a book with our phone, and we want the computer to be able to actually be able to copy the text, it needs AI to actually recognize what each character is.

So lets design a neural network that will detect the number 4. For our character recognition program/application, lets say we are given an 8 x 8 panel of lights, each panel can light up like this:
[image: image7.jpg]| _smart sweepersvio

Genesdion: 9 5 v
B R
e O
§4 4 nu
. g = = ° @
& o
s A Lo,
X
a i P
- a a
a & Uy s %" u





[7]

We want to detect when the entire panel looks like the number 4. We also want the neural network to accept the state of the entire panel as input, and output a 1 if it thinks there is a 4 (and 0 otherwise). The neural network will have 64 inputs, one for each individual panel. We also have the hidden layer, the hidden layer then feeds everything into one neuron for the output. (Remember the earlier diagram [6] but with all 64 inputs connecting to every neuron in the hidden layer.). 

So to review, the input layer takes in the entire panels (X₁ takes an entire panel, X₂ takes an entire panel, etc.). Then the hidden layer's neurons each have 64 inputs (one for each of the individual panels in the entire panel). Then depending on the calculated values of the neurons in the output layer, they will output a 1 if it thinks the entire panel is a 4, or a 0 if not. 

Now that we have our neural network designed, we need to teach/tell it what to look for. This is called training a neural network. To train the neural network, we first start with random weight values for each neuron's input. Then, we begin feeding the network with a series of inputs (in our case, these would be different configurations of “entire panels”). We then go though each configuration, and adjust the weights so that the network outputs a 1 when we see something that looks like 4. We also need to adjust the weights so they out put a 0 when it does NOT look like a 4. This type of training is called supervised learning and the data that we fed into the network is called training data or a training set.

There is actually an algorithm that is commonly used for adjusting weights and continuously fine tune them called Backpropagation. We won't go into that here, since its a whole can of worms and is not necessary for our particular use. We will actually use a technique which does not require any supervision.

Another upgrade we can potentially give to our character recognition neural network, is this: If we increase the number of outputs to 10, we can expand and train our neural network to detect digits 0 through 9. If we further increase the number of outputs to 26, we can expand our neural network to recognize all the letters in the alphabet. 

Lets take a look at another application using neural networks. Mat Buckland created a simulation using a neural network called “Smart Sweepers”. The simulation has AI bots called “minesweepers” (the tank looking shapes) that move around the environment and try to pick up mines (the green squares).
[8][image: image8.emf]

In a traditional game/simulation, we would code/write the AI instructions like this: “First find the closest mine, then move toward it and keep moving toward it until you collide with the mine. Repeat the process”. But like we said earlier, this makes our AI somewhat ridged and will never get more efficient. If we instead use a neural network to determine the best way of navigating, we will see that with each generation that passes, the tanks will become more and more efficient/faster at picking up the mines. The minesweepers highlighted in red are the top performers of the current generation. Each generation lasts about 30 seconds, and each mine re-spawns at a new location once it's collected. At the end of a generation, the minesweeper's fitness scores are sorted, and the ones that have a higher score, have a higher chance of passing on their traits to the next generation. We'll get into the details of the gene passing stuff shortly, but for now, just know that we can pass the genes/traits of one minesweeper to another (we can also mutate and/or crossover these genes/traits as well). 

The way the minesweeper/tank moves is by moving its left and/or right tracks forward and/or backwards. To move the right track forward, we provide a positive float value (decimal value), same thing for the left track. So to recap, if we want to move the minesweeper/tank forward, we give positive float values to both the left and right track. This makes both the left and right track move forward which makes the minesweeper/tank move forward. If we want to move backwards, we give negative float values to both the left and right tracks. This allows the minesweeper/tank to move forward and back, but how do we turn? For the tank to turn left, we give the left track a negative value, and a positive value to the right track. This will make the left track go backwards and the right track go forwards, this  in turn makes the minesweeper/tank turn to the left. We do the same thing for turning right but we give the right track a negative value and the left track a positive value instead. 

With this, we can now have our minesweeper/tank move around the 2D world. Lets review, how do we move the minesweeper/tank? Provide values for the left and right track. So now we know we want our neural network to output two values, a left track value and a right track value. As you know, with a neural network, we also need inputs so it can make these calculations/determinations. But what do we give as inputs to the neural network? Lets think about what information we would need if we were manually controlling the tank. We need to know the location of the closest mine. We also need to know the direction the minesweeper/tank is currently facing. More formally, we need the X,Y location values of the closest mine and the X,Y location values of the look-at location of the minesweeper/tank (in total 4 inputs).

Since we are going to be talking about X,Y values and vectors in general, it is necessary for you to know about them on some level before we continue. It's too big of a can of worms to open here, but it is important for you to understand what I mean by X,Y values. Simply put, an (X,Y) coordinate is a point on a graph, or in our case, a location in the 2D world. I highly recommend taking the time to learn about them before continuing if you don't know about them already. 

Because X and Y are used for position/location and vectors in general, I don't want us to confuse it with the (X1, X2 , etc) that we use to represent the neuron inputs. To represent neuron inputs going forward, instead of (X1, X2 , etc), I will use the letter 'K', so the neuron inputs will be denoted as (K1, K2, etc). I basically just want to use a symbol we won't accidentally mix up with our math.

Getting back to the Smart Sweepers neural network, lets recap. We have the 4 inputs, the x,y location of the closest mine and the look at vector (the look at vector's x,y values). We also know that we want two outputs for the left track and right track values (Note: Whenever I say value, I mean a floating point/decimal number like 6.9420). 

But we have a problem, so far we have seen our neural networks only output a 0 or a 1 (no signal or signal). If we used that as it is now, the left and right tracks would only get 0 or 1 for values. That would just make the minesweeper's/tank's left or right track move at max speed and/or stop completely. In other words, we want something more gradual instead of all or nothing. 

Our current step function takes the calculated activation value and makes the output it either 0 or 1. But like we just said, we want a more gradual/smoother step function. Once again, thanks to math, we have a solution for this, we can use what is called a sigmoid function (which is just a fancy way to say S shaped). Here is what the sigmoid function looks likes:
[9][image: image9.jpg]output

05

[

activation






Lets go though each component of the sigmoid function:
· e is a math constant (an irrational number around 2.71828).
· a is the activation value calculated from our neural network.
· p is usually 1. The closer p is to 0, the more the sigmoid looks like a step.

If we plot the above sigmoid function ([9]) on a graph, it looks like this:
[10][image: image10.png]ZASON

N

)

,

P

/

W

Vw.

[

|

s

‘\I

Al

.«.

\

/

s

Al

\

(

X
0

W

,

)

Ned
()

i

\

/

.A

/.






As you can see, it looks almost like the original step function, but rounded out. Lets try to put some actual numbers to this and see how it actually works. Lets say our activation value is 4.20, if we use the original step function, that would give us an output of 1. Using the sigmoid function, if we plug in 4.20 for a (the activation value in the equation) and calculate the output, we get 0.985. With this, our neural network can output values besides just 0 and 1 which ultimately gives it more flexibility.

We have the 4 inputs, 2 outputs, and the sigmoid function in place of our step function. The next question is: “How many hidden layers should there be and how many nodes per hidden layer should we use?”. Currently, there is no known rule for how many hidden layers or nodes to use, it simply depends from case to case. You can however get a feel for it the more you experiment with the neural network. The one that is used for Smart Sweeper's uses 1 hidden layer with 6 nodes. Below is a diagram to help visualize what it looks like.

[image: image11.emf]

If you want to follow along with the code, this is a good time to take what you have read here and look at the code for the Smart Sweeper's project. It is written in C++. I decided to re-write the original code to use more Object Oriented Programming and be a little more flexible. This helped me understand the project much better and allowed me to expand upon the original code for my own purposes. 

As we can see in the code, the Neuron class has N number of inputs. But what is with the “NumInputs + 1” (or what is this bias thing)? To answer this, we need to go back to our math notation for calculating the activation of a neuron:


A = K1*W1 + K2*W2 + K3*W3 + … + KN*WN




(K represents our neuron input(s))


We can also write it to include the threshold. This is because the output of the neuron depend on if the activation exceeds the threshold (T):


K1*W1 + K2*W2 + K3*W3 + … + KN*WN >= T

We can now do some algebra to get T to the left hand side (by subtracting T from both sides):
K1*W1 + K2*W2 + K3*W3 + … + KN*WN  - T >= 0

“That's all very nice Eddie, but how does that help us?” With this, we can actually treat the threshold as a weight (now that it's on the left hand side). Lets re-write the equation to make the threshold look more like a weight:

K1*W1 + K2*W2 + K3*W3 + … + KN*WN  + (-1)*T >= 0

We can use -1 as its corresponding input, and multiply it by T. Not only does this allow us to simply treat the threshold as a weight, it will also evolve along with the weights. This “-1 * T” is also known as the bias.

As we have discussed, a neural network is a collection of neurons, but more specifically, a neural network is a collection of neural layers, and each neural layer has a collection of neurons. Now that we have our Neuron class, lets take a look at the next section of code called  NeuronLayer. The NeuronLayer class, like we mentioned before, is a collection of neurons such as, the input layer, the output layer, and the hidden layer(s). The NeuronLayer class is basically just an array of neurons along with functions to help access/modify the indivudual neurons in the layer.

Note: Smart Sweepers uses the term "mines" for the "Minesweeper" targets. In Neural Tanks, the "mines" are "tank amunition" and the "Minesweepers" are Tanks. In either case, mines/tank ammo are the targets the minesweepers/tanks are moving toward.

The most important parts of the NeuronLayer class are probably the two functions: CalculateOutputs() and InitializeLayerWithRandomWeights(). The CalculateOutputs() function goes though each neuron in the layer and calculates it's output. After the function goes though each neuron and calculates its output, it then returns an array containing all the calculated output values.  The InitializeLayerWithRandomWeights() function may seem strange at first, you might be thinking "why are we assigning random values as the wieghts?". The idea is that the neural network will start with these random weight values so the neural network can adjust them over time. 

That's about it for the NeuronLayer, let's take a look at the next section of code for the neural network class called NerualNetwork (suprising I know, my naming conventions are so unique). Just like how the NeuronLayer is a collection of Neurons, the NeuralNetwork is a collection of NeuronLayers. As you know, the first layer of a neural network is the Input Layer. Next, we need to think to ourselfs "What information does the neural network need to make a decision?". The goal of our tank (neural network), is to find the closest tank ammo, and then move to that tank ammo. But we also want to take into account which direction we are facing. This is because it might be alot more work to turn around all the way, when it is more efficent to go to a different mine. 

In Smart Sweepers, the whole game is 2D, but as you know, our game is in 3D. I decided to leave the mine field/tank ammo field 2D. What does this mean? All this means is that the tank ammo will only exist on the floor (the X and Y plane). The tank ammo (and the tanks) cannot move up and down (along the Z axis). "But Eddie, Neural Tanks has levels that are not flat, they have terrain, I thought you said we werent working with the z axis?" Exactly, great question, in the case where you see terrain (hills and pits) we are simply getting the "Terrain Height" at that location. I can give any x,y location in the level and it will tell me the height of the terrain at that location. From there, I set that as the z location for the tank ammo and tanks. So the z component is somewhat irrelevent to us because it will just be whatever the terrain height is at that x,y location.


With that information, the tank (neual network) can make decision(s) on how and where to move. The output of the neural network will be two values, one for the amount of force to give the left pedal, and one for the amount of force to give the right pedal (which allows the tank to move forward, left, and right). Lets take a look at the specific values we are going to pass to our neural network:

The Input Layer of the neural network will take in 4 inputs:

· The X component of the closest tank ammo location.

· The Y component of the closest tank ammo location.

· The X component of this tank's look at vector.

· The Y component of this tank's look at vector.

After passing the our data to the Input Layer, The Input Layer then passes the data to the Hidden Layer, then the nodes in the Hidden Layer do their calculation, and then the output of those neurons gets sent to the next Hidden Layer (if there are more hidden layers). For Neural Tanks and Smart Sweepers, there is only one Hidden Layer. So after the Hidden Layer does its calculation(s), the output of those neurons gets sent to the final layer, the Output Layer. 


The Output Layer is the last layer in the neural network, it takes the output produced by the last Hidden Layer, does its calculations, and then produces the output. 

In our case, the Output Layer of the neural network return 2 values:

· The amount of force to give the left pedal (how much to move the left track).

· The amount of force to give the right pedal (how much to move the right track).

This wraps up the CalculateOutputs() function, but we still have a missing piece. We need a way to manipulate the weights of the Neural Network, otherwise, the Neural Network can't learn over time.  

So we basically need an algorithm that can take the weights of our neural network, and change them based on....what? Hmm, good question, what if we look to nature, the same way we did for neurons? We have a set of numbers (weights) that we want to have change over time. What if we use the idea of genes and how individual genes in DNA can be passed on, mutated, or unchanged? With this, we can also produce new "genes" (aka weights which are just numbers). If we look at humans (or all living things), our DNA contains genes from our parents. Up to half of our genes are from our father and up to half are from our mother (It's very rare that the genes are split exactly 50/50). But in addition to that, someimes our genes have a random chance to mutate. This can be good or bad depending on the gene, but it allows for a potental "evolution" of the DNA. This idea is referred to as a Genetic Algorithm.

All organisms such as plants, animals, humans, bacteria, and some viruses too, all have DNA. DNA works as a blueprint or a set of instructions for how that organism is built. For example, DNA specify things like do we have fur, hair color, number of limbs, eye color, etc. Each one of these instructions in the DNA is known as a gene. Each one of these genes can have different "settings" such as "brown" for hair color, or "blue" for eye color, etc. Each one of these "settings" are called a genotype.  Some of these definitions are simplifications of real world biology but we are leveraging the analogy for our needs. When one of these genotypes are expressed physically (you can see the "blue eyes" for example), it is called a phenotype.


A series of connected/grouped genes is called a chromosome. As we mentioned before with mating, the offspring/child recieves genes from both the "mother" and "father". As you also know, this is very rarely ever a clear 50/50 split of the two parents genes. Each chromosome has what we call a crossover rate, the crossover rate defines "how often will this gene be swapped with the other parent's gene". For our application: we generate a random number and determine if it's less than or equal to the crossover rate. If it is, then we swap all the genes between parents, starting at a randomly generated index. The "genes" in the Neural Tanks chromosome are actually weights, and the "chromosome" holds an array of "genes"(weights). 

We briefly mentioned it before, there is this idea of randomly mutating a gene. More formally; mutation is when one of the gene(s) is randomly flipped/swapped. The muation rate is typically a very small value to begin with. We only want mutations to happen rarely. If we have mutations happen often, it will lead to much more "randomness" between genes and is not really the desired outcome. This mutation process happens independantly of the crossover process. 

Lets discuss how this is implemented in code. We mentioned that living organisims can have multiple chromosomes, humans for example have 46 chromosomes. For our needs, each Enemy Tank (the AI/Neural Network) will only have 1 chromosome. The "genes" for Neural Tanks (or Neural Networking in geneal) are weights for our Neural Network. 

The Chromosome class has the following properties (instance variables):
· Fitness – The "score" that describes how good this chromosome is at solving problems, in our case, how efficient it is at collecting tank ammo.

·  Crossover Rate – A rate to determine if/where in the weights collection we separate this chromosome. This is used for mating, we take the weights of one parent and cross them at the chosen index with the other parent.
· Mutation Rate – A rate to determine if/where we mutate a single weight by adding/subtracting a small value to it.
· Mutation Max Perturbation – A multiplier for adjusting how much a single gene is mutated.
· Weights – The collection of weights associated with this chromosome. Typically manipulated by the GeneticAlgorithm class.

The functions for the Chromosome class include the ability to Crossover(), Mutate(), CopyChromosomeData(), and other functions for manipulating the various properties. 

Now that we have an understanding of how we are leveraging the Genetic Algorithm for Neural Tanks, Let's get into the details of how the Genetic Algorithm actually works.

Genetic Algorithms can be used for many different problems, even problems not directly related to Neural Networking. The main idea behind a Genetic Algorithm is that it it will start by taking random attempts at solving the problem, Those attempts are sorted and given a fitness score based on how close they are to solving the problem/reaching the goal. If the attempt goes beyond the target, the attempt is given a fitness score of 0.


Mat Buckland provides a couple of different projects/code examples on how we can leverage Genetic Algorithms for different needs. Lets take a look at the first one provided. The task is:
 “Given the digits 0 through 9 and the operators +, -, * and /,  find a sequence that will represent a given target number. The operators will be applied sequentially from left to right as you read.”[11]. 

Let's take a look at some examples to get an idea for the problem: Lets say the target number is 60, then one possible solution is 9*7-5+2. First we do 9*7 and get 63. Then 65-5 is 58, and then finally 58+2 is equal to 60. Another example could be: if the target number is 33.5, then one solution is 6+2*8+3/2.

So how do we relate this to chromosomes? As you know, our chromosome is a collection of genes, and we need to be able to mutate and crossover genes. If we represent our individual genes as for exmaple: 9, *, or 7...we wont be able to "crossover" or "mutate" them (in other words, how would you mutate the '*' or the number 7?). It's a weird problem, but we actually have a solutuion. What if instead of using numbers and symbols for genes (which we can't crossover or mutate), we instead convert the numbers and symbols to binary (which we CAN crossover and mutate). If we encode the characters and numbers as binary, we can crossover and mutate the individual bits. Our chromosome will have a series of encoded characters, lets do the encoding now:

Gene Encoding:
· 0 
=> 
0000
· 1
=>
0001

· 2
=>
0010

· 3
=>
0011

· 4
=>
0100

· 5
=>
0101

· 6
=>
0110

· 7
=>
0111

· 8
=>
1000

· 9
=>
1001

· +
=>
1010

· -
=>
1011
· *
=>
1100
· /
=>
1101

As you can see, we are limited to only single digits in this encoding, but thats not an issue for our needs. 

Now lets look at the solution we have for the target 60:
9
*
7
-
5
+
2


Lets encode the solution using the above chart/table we came up with:



1001
1100
0111
1011
0101
1010
0010


Nice! So the encoding is done, lets now look at how to decode.

As you can probably guess, decoding is just going the opposite direction of encoding. It sometimes is not that simple though. As you know, our mutate and crossover functions will swap or change individual bits in an attempt to create a new solution.  In doing so, we could create a string of bits that does not correspond to anything in our table and/or we might have a sequence that doesn't make sense like this:




5
3
*
/
-
5
7 
6

(remember; since we are working with single digits, “53” and “576” here are invalid)

We can create a function to “clean up” the sequence. In this case, the above sequence would be cleaned and interpreted as:







3
*
5

Once we have a solution (gene sequence) we can determine the fitness of the chromosome. The fitness is a score given to the chromosome to represent how close it is to solving the problem (or how close it is to our target). This can sometimes be the hardest part of the algorithm; to figure out how to measure and score a solution. It really depends on the specific problem, but in general, we want the score to go higher the closer it is to solving the problem. For this example, we can take the inverse of the difference between the calculated target and the original target we are solving for. So for example, lets say our original target is 60, and for the current chromosome's solution, we get 42. To calculate the fitness we can do:






1 / (60-42)

Which equals about 0.0555

Lets try a few more values, using the same original target but a different chromosome this time. This chromosome's solution equals 3, not great, lets see what the fitness score is:

1 / (60 - 3)

Which equals about 0.01754

One more, what if The next chromosome's solution equals 59.75?

1 / (60 – 59.75)

Which equals 4

Nice! So as the chromosome's solution gets closer to the target, the score goes up just like we suspect. There is one thing we need to watch out for and its a special case. Lets say the next chromosome's solution equals exactly 60. Lets look at what the equation would be:

1 / (60 – 60)

1/0

As you can see, this results in a division by zero error. This can be easily fixed though with a check to see if they are equal. If they are equal then you found a solution, otherwise calculate the score. 


Lets write the steps of the full Genetic Algorithm:

1. We start with a random number of chromosomes in an array. These chromosomes are initialized with a random set of genes (weights) to start with.

2. Go though each chromosome and calculate it's solution value and its fitness.

3. Check if the chromosome has solved if so stop and return that one, otherwise continue.

4. Select two chromosomes using the Roulette Wheel random selection. This ensures that the better the fitness, the better a chance the chromosome might be picked.

5. Crossover the two chromosomes depending on the crossover rate, this will produce a new chromosome.

6. Apply the mutation on the new chromosome which will mutate the genes based on a mutation rate.

7. Go back to step 2 and continue until a solution is found.

One last thing about the Genetic Algorithm we need to discuss is the roulette wheel random selection. “Can't we just generate a random number and pick a Chromosome? Why the roulette wheel?”. Great question, and this is one of the main things that makes the Genetic Algorithm work. If we just picked 2 random numbers for the 2 chromosomes to mate (aka crossover and create a new chromosome), it would be at total random selection. But we don't want that, what we actually want is to leverage the Chromosome's fitness score. The higher the fitness score, the higher we want the chances of that chromosome to be picked. Similar to a pie chart with fractions, depending on the fitness score, the chromosome would take up a larger portion of the “roulette wheel”. I picture it something like this:

Now imagine we spin the wheel. We can then generate a random section and select the chromosome that falls in that random section (which is also called slice). [image: image12.emf]

Lets go into more detail about score, I took the time to list out various scores to see what their values look like:


1/420

= 0.002380


1/69

= 0.0144927


1/50

= 0.02


1/7

= 0.142857


1/6

= 0.166666


1/5

= 0.2


1/4

= 0.25


1/3

= 0.333333


1/2

= 0.5


1/1

= 1


1/0.975 
= 1.025641


1/0.95  
= 1.052631


1/0.9   
= 1.111111


1/0.85  
= 1.176471


1/0.01  
= 100

1/0 

= undefined (perfect match if originalTarget - calculatedTarget = 0)

As you can see, the value of the score goes up as the calculated target for this chromosome goes up. For the roulette algorithm, we can do the following:

1. Sum up the total of all of the chromosome's score. (starting from 1/2 to 1/420 = 1.6297308488612836438923395445135)

2. Generate a random float (from 0.0 to 1.0) and multiply it by the sum total, this gives the “slice” value. I think of this as a “random percentage” of the roulette wheel (or a random slice) (lets use 1.13135916 as an example for the slice value).

3. Now go though each chromosome again one at a time, and check if that score is >= the slice (random percentage, in this example: 1.13135916). If it is, then pick (return) the chromosome.

4. If that score is NOT in the range, we go to the next chromosome in the list and keep accumulating the score. The accumulation is necessary since we are working with the sum total of all the scores and we took a percentage of it, as we can see, that random float is 1.13135916 and if we did not accumulate, it would never be true because the individual scores are not large enough on their own (since we started with a total) if that makes sense. "But don't we have to worry about the current total not reflecting the current score (since its an accumulation)?" I thought so at first too, but because we are starting with the accumulation (of each score) and then taking a percentage of that accumulation, we can keep the current total and check if we have "landed" in the range. Like we saw before, if we just tested against the individual scores, the score wouldn't work with the random percentage total. We need the total to account for all of the choices correctly/evenly.  

That pretty much covers it for the Neural Networking side. From here, the output from the Neural Network is directly used as the AITankPawn's left and right track input. This makes the AI tank pawn move and navigate the level. 

The next thing to discuss is the Game Design Document (GDD). This will go into details about the game specifically.  
Game Design Document (GDD)
Game Overview



Game Concept: I wanted to make a mini-game for The Desert's Rose. Since The Desert's Rose is a VR game, and it has an Arcade, I wanted to make it possible for the player to play the arcade games in VR. I decided to make a tank game that leverages Neural Networking for the AI. 



Inspiration: I wanted to learn more about Neural Networking, and one of the best ways for me to learn is to actually do/practice the thing. I found these great tutorials written by Mat Buckland which shows how to use Neural Networking with a simulation called Smart Sweepers. The simulation uses simple shapes to represent “mines” and “minesweepers”. These minesweepers use a Neural Network to try and navigate to the closest mine. Using this idea, I wanted to expand on it and create a full 3D game. 


Target Audience: Anyone who enjoys a casual indie game with tank combat.



Genre: Action, Indie, Casual, Tanks.



Game Flow Summary: The game has 5 levels and 1 boss level, for a total of 6 levels. The player is forced to play the levels sequentially staring at level 1. To complete the level, the player must destroy all of the enemy tanks.



Look and Feel: The perspective for the player is a 3rd person (behind the tank) arcade shooter. The player can see the cross-hair for the tank as a sphere on the ground. I chose this instead of the typical “always in the middle of the screen” because the tank's rocket follows a projectile path and I find the sphere gives the player a better sense of where the rocket will land. The scenery varies between levels such as a winter forest, secret ruins, a low polygon forest, and more.
Gameplay


Objectives: The player must destroy all the enemy tanks in each level. When the player completes a level, the next level is unlocked. After the 5th level, the final boss level unlocks. Once the player destroys the final boss, the player has beaten the game.
The following objectives are the main objectives in the game:

1. Destroy all of the enemy tanks in each level.

2. Obtain all of the gold armor pieces along the way.

3. Destroy the final boss “Sassy Sam”

Game Progression: When clicking new game, the player will spawn into the first level. To complete the level, the player must destroy all the enemy tanks. It is also recommended to obtain a piece of the unique “Gold Armor” that is hidden throughout each level. The player can choose to quit the level (which brings them to the main game menu) at any time.


Play Flow: The player selects a level, then the player needs to navigate the level and destroy the other tanks in-order to unlock the next subsequent level. When the player completes the level, a UI is displayed showing how many were destroyed and the final score. If the player is destroyed, a UI is displayed showing “Game Over”.


Objective/Quest Structure: The only objective is to destroy all of the enemy tanks in each level. Once the player has defeated all of the enemy tanks in the first 5 levels, the player must destroy Sassy Sam to beat the game.


Interactive Dialog: The dialog of the game is small and is not interactive. Sassy Sam has a small introduction voice line along with other random voice lines during the boss fight. There is also a narration at the beginning of a new game that serves as an introduction.


Exploration Structure: The game is a collection of separate and unique looking levels. Each level can be completely explored in about 5 minutes. 
Mechanics 

Rules: The player has health points (HP), armor points (AP), and infinite lives. The player can be damaged by enemies attacking the player. If the player's health points reaches 0, they die. When the player dies, they can chose to return to the game menu. If the player destroys all of the enemy tanks in the level, the player has completed the level and is given rewards and the option to return to the game menu. If the player has beaten the level for the first time, the next level in the list is unlocked. Once the player has beaten all 6 levels, they have beaten the game.

Game Universe: The game universe takes place one earth and each level is an area that is infected with rogue AI tanks. The player is automatically teleported to these areas when they start the level. The level themes vary drastically from a winter forest, graffiti pit, low poly forest where the player is small, and a ancient runes level that has destructible runes. 

Stats: The player is able to apply stats to the tank in the form of  items that can be equipped. Some of these items include gold gears that improve the tank traction, gold tank cannon to decrease reload time, and more.

World Physics: The physics of the world are almost identical to real life physics on Earth. The slight exception would be on the low poly level where the player and the enemy tanks are shrunk down.

Economy: Money is in dollars. The player can earn money simply by destroying enemy tanks and completing the level. They can also earn a small amount of money by collecting the enemy tank ammunition in the level.

Player Movement: The game has standard WASD input along with controller/gamepad support. The player is able to move the tank forward and backward with W and S (Forward and Backward on the left stick of the controller/gamepad). The player is also able to turn the tank left and right with A and D (Left and Right on the left stick of the controller/gamepad). 

Interaction: Beyond the the standard player movement, the player is interacting with a collection of enemy AI tanks that are using Neural Networking for their decision making and navigation. 

Actions: This is similar to the previous two topics Player Movement and Interaction. The following is a list of actions the player can perform:

· Fire Cannon – The player launches a projectile from their tank using realistic physics. 

· Move Forward/Backward – The primary way to move the player's tank.

· Turn Left/Right – The player can turn the tank left or right and then move forward/backward in the desired direction.

· Toggle Boombox – The player is able to use the mouse cursor and/or a gamepad for interacting with the boombox.


Combat: The combat is a third person perspective tank that uses realistic physics to control and drive the player's tank. The main weapon (and only) for the player is the tank's main cannon. The player can enter combat by shooting at an enemy tank and/or getting within the enemy tank's firing distance. Shooting actually uses realistic physics projectile motion, so when shooting the cannon, the projectile will fly at an arc. This can take some getting used to but I wanted the tank to feel somewhat realistic in both the firing of the cannon and moving/ controlling the tank.  All of the enemy tanks are destroyed in one hit, however the final boss does have health and armor similar to the player. 

Screen Flow:  How does one scene lead into the next one? The game is made up of individual levels that the player can select from. When the game first starts, the player only has access to the first level. When a player completes a level, the next subsequent level is unlocked and available for play. The player can also play previously completed levels. The general flow of the game goes between gameplay level and game menu for various options and sections such as inventory, save/load game, etc. Each of these levels has its own unique aesthetic and scenery (setting in the traditional term). 

User Interface: The user interface in the game is a simple 2D GUI. The game has a main menu, a game menu (the menu that allows the player to visit the shop, inventory, saving/loading, and options, and a pause menu that can be displayed while the player is in a level. In addition the standard UI. The player's HUD includes a health bar (HP), an armor bar (AP), cannon reload bar (how long the reload is taking), and a boombox. The boombox includes a large variety of music the player can listen to while in the level. 

Options/Settings: Various options/settings are available for the player to adjust such as visual quality, audio, and gameplay related settings. Here is a list of those available settings:
· Video Settings:

· sg.AntiAliasingQuality

· sg.EffectsQuality 

· sg.PostProcessQuality

· sg.ShadowQuality

· sg.TextureQuality

· sg.ViewDistanceQuality

· Audio Settings:

· Master Volume (controls overall volume)

· Music Volume

· Voice Volume

· SFX Volume 


Saving and Loading: All games need saving and loading to some extent. Our game has the player collecting items and destroying enemy tanks. This all needs to be saved and loaded. The save file needs to save all the following things:

· All the items, money, and weapons in the Player's Inventory

· All the items and weapons the Player is currently wearing (Equipment and Accessories).

· All level progress (which levels are unlocked).

· Player stats such as how many Enemy tanks destroyed.

· Internal metadata for keeping track of the total number of save files and the save files themselves (This is not player facing).


Cheats: Cheats are necessary for development and testing of the game. To enter cheats, a device inside the players house allows the Player to enter codes into a console like text window. Below is a list of available cheat codes:

· God Mode (Invincibility) – Player cannot die.

· Unlock all gold armor – Unlocks all the gold armor for the player.

· Unlock all levels – Unlocks all 6 levels.

· Instant Reload – No time wasted between shots.

· Max Cash – Gives the maximum amount of cash (the max value of a standard int).


Easter Eggs: Since this is a small game, there are not many Easter Eggs, but here are a couple:
· The Kintama Twins – Kintama in Japanese means “Golden Ball” which means testicles. A Tanuki is the name of a mythical Japanese creature that was a raccoon samurai with big balls. The Tanuki would apparently use it's ball sack as a cape for gliding like a flying squirrel. 
· Sassy Sam – I was always a huge fan of Billy West and Jackie “The Joke-man” Martling. The voice I recorded for Sassy Sam is an imitation of Billy West imitating Jackie Martling.
Story and Narrative

Back Story: The player is tasked with destroying all of The enemy tanks that are released to different parts of the world. The enemy tanks however, aren’t just self-improving by chance, they’re under the control of the sinister Sassy Sam, a mad scientist who unleashed a rogue AI into the world without a second thought for the chaos it would cause. It is necessary to take down the increasingly dangerous enemy tanks before they wreak anymore havoc. 

Plot Elements: Since this is a small game, the plot elements are very few, Here is a list of the general plot elements in the game:

1. The player is tasked with destroying the rogue AI tanks.

2. As the player moves from different levels destroying the enemy tanks, they will eventually run into Sassy Sam.

3. The player has a final boss fight between them and Sassy Sam.

4. Sassy Sam explodes and the player beats the game.

Game Story Progression: The story starts with the player being dropped into controlling a tank where there are other enemy tanks they need to destroy. As they progress through the game and get to the final level, the player finally confronts Sassy Sam.
Game World

General look and feel of the world: The game is a simple “arcade” style, third person shooter. The player is able to play specific levels and the game menu for various game options. Each level has separate bounds and are not tied to one another (this is not an open world game).

Areas: The game consists of six levels in total, five regular levels with enemy AI tanks, and one final boss level where the player fight Sassy Sam.
Here is a list of the various levels in the game:

· The Pit – This is the first level, the enemy tanks wont attack the player until level two. This is a very basic level with four walls and a floor.

· Meadow – This is the second level which is unlocked after the player completes the first level (The Pit). This is a spring meadow with fewer tanks then the first level but they now attack the player when they obtain tank ammunition.

· Winter Forest – This is the third level which is unlocked after the player completes the second level (Meadow). This is a winter forest level with snow effects and slightly more enemies.

· Lowpoly Forest – This is the fourth level which is unlocked after the player completes the third level (Winter Forest). In this level, I wanted to do a level where the player was shrunk down to the size of a toy tank. The easiest way to do this ended up just making everything in the level ten times larger.

· Old Runes – This is the fifth and final standard level before the boss level. The Old Runes level is unlocked after the player completes the fourth level (Lowpoly Forest). This level includes old runes that can be destroyed (Destructible Meshes). 

· Showdown – This is the sixth and final level in the game where the player fights the boss Sassy Sam. This level is unlocked after the player completes the fifth level (Old Runes). This level is a remix of The Pit level but with additional walls for cover.
Characters

The descriptions and details of the characters are described below.
Sassy Sam

Back Story: A mad scientist that has no regard for human life and their well being. He created a rogue AI Neural Network that has gone out of control. Instead of fixing the AI, he is intentionally spreading the rogue AI and is using it to take over the the world.

Personality: Smart, Egotistical, Arrogant.

Appearance: Male, skinny, long blond hair. Above average height, 39 years old.

Abilities: Highly skilled AI programmer. Skilled tank driver and gunner. 

Relevance to the story: The main Antagonist of the game.

Relationship to other characters: The Player's final goal is to stop Sassy Sam. 
Multiplayer 

Server Type:  This is a single player game, multiplayer is not available. 
Additional Information

Neural Network Settings

As you know, the Neural Network uses some settings/properties such as the number of hidden layers to use, number of neurons per layer, etc. These properties were dialed in by Mat Buckland for the use in Smart Sweepers. I tried experimenting with different values but I ultimately found the original values to be the best. In the designs folder, I provided a spreadsheet of the measurements I did for trying the different values. Feel free to experiment with different values, you might find better settings. This spreadsheet is located in the Design folder in the Project folder, its called “NN Spreadsheet.ods”.

Engine Level Modifications


The game uses a plugin called Common UI. This plugin allows for scrolling marquee style text (used for the boombox display). The Common UI plugin has a bug in it where we need to modify its .uplugin file. I have Unreal Engine installed on my C drive, this is where the plugin file is located for me here:



C:\Program Files\Epic Games\UE_4.27\Engine\Plugins\Experimental\CommonUI\CommonUI.uplugin

In this file, you need to change the loading phase value to look like this:
"LoadingPhase" : "PreDefault"

Here is the full file (a copy is provided in the Raw Assets folder): 
{


"FileVersion" : 3,


"Version" : 1,


"VersionName" : "1.0",


"FriendlyName" : "UI Common Plugin",


"Description" : "A repository for game independent UI elements.",


"Category" : "UI",


"CreatedBy" : "Epic Games, Inc.",


"CreatedByURL" : "http://epicgames.com",


"DocsURL" : "",


"MarketplaceURL" : "",


"SupportURL" : "",


"EnabledByDefault" : false,


"CanContainContent" : true,


"IsBetaVersion" : false,


"Installed" : false,


"Modules" :


[



{




"Name" : "CommonUI",




"Type" : "ClientOnly",




"LoadingPhase" : "PreDefault"



},



{




"Name": "CommonUIEditor",




"Type": "Editor",




"LoadingPhase": "PreDefault"



},



{




"Name" : "CommonInput",




"Type" : "ClientOnly",




"LoadingPhase" : "PreDefault"





}


],


"Plugins":


[



{




"Name": "GameplayTagsEditor",




"Enabled": true



}


]

}

Glossary
Activation – The literal value outputted by the neuron, this value is calculated inside the nucleus.
Activation Function – A function inside the nucleus of the neuron that calculates the activation based on the inputs and weights. 
Artificial Neuron – A neuron that is modeled using code/programming.
Axon – The output tube of the neuron that sends an electrical signal depending on the neuron's inputs and threshold.
Chromosome – A collection of genes.
Coordinate – A single x value and y value pair that represents a point on a graph. These graphs are also known as Coordinate System(s). This is useful for specifying locations in a level.
Crossover Rate – The rate that dictates if/when genes in a chromosome should swap with the other chromosome. In other words, a rate to determine if/where in the weights collection we separate this chromosome. This is used for mating, we take the weights of one parent and cross them at the chosen index with the other parent.
Decode – The process of converting some encoded data back into its original form (for example; binary strings to characters).
Dendrite – The input tube of the neuron that receives electrical signals and sends it to the synapse.
Encode – The process of converting some data into a different representation (for example; characters into binary strings).
Evolve – In the context of neural networks, evolve refers to how the weights of the neural network change over time. This change happens typically during training or manual tweaking. 
Feedforward – A feedforward neural network is one that transmits data in one direction, from input to output, and contains no feedback loops. 
Fitness – The "score" that describes how good this chromosome is at solving problems, in our case, how efficient it is at collecting tank ammo.
Genetic Algorithm – An Algorithm is one that evolves over time though trial and error to converge toward something. 
Gene(s) – One of the individual rules or building blocks of what makes us...us, For example; do we have fur, how tall are we, do we have light sensitive eyes, what color are our eyes, etc. 
Genotype(s) – A “setting” for a gene, for example; for the gene “hair color”, the genotype would be “blonde, brunette, red, etc”.
Hidden Layer – The “meat and potatoes” of the neural network. More formally, the neuron layers between input and output are the “hidden layer(s)”
Mine – An explosive device used to destroy anything that steps on/gets close to it.
Mutation Rate – The rate that dictates how often a singe gene in a chromosome should flip. In other words, a rate to determine if/where we mutate a single weight by adding/subtracting a small value to it.
Mutation Max Perturbation – A multiplier for adjusting how much a single gene is mutated.
Neuron – The single brain cell containing the dendrites, synapses, and axon.
Neural Layer – A collection of Neurons. A Neural Network is a collection of Neural Layers, and Neural Layers are a collection of Neurons.
Neural Network – A collection of Neural Layers. More formally, the Neural Network is managing a whole collection of neurons that is responding to various inputs in order to make a decision.
Phenotype – The physical appearance of a gene, for example; seeing someone has red hair.
Roulette Wheel – A game piece used for gambling, its colored with red and black strpis and spins around with a small ball inside. Once the wheel slows down, the small ball will land on one of these red and black strips. People take bets on what strip the ball will land on.
Sigmoid – S Shaped.
Step – The step function is the process of the neuron sending a 1 (signal) if the calculated activation value is above the neuron's threshold. If the calculated activation is below the neuron's threshold, the neuron sends a 0 (no signal).
Supervised Learning – The process of manually tuning the weights of a neural network so the output produces a 1 or a 0 when we want it too.
Synapse – The end part of the dendrite that processes the received signal.
Threshold – A literal value (for example “4.20”) that the neuron uses to determine if it should output a signal. 
Training – Training a neural network is the process of teaching the network to perform a particular task. 
Training Data/Set– The data used to train the neural network (see Training). 
Vector – A vector is a quantity that has both direction and magnitude. For example, velocity is a vector because it tells us both the speed and direction of something. Force is a vector because it tells us how much and a direction. Speed is not a vector since it only tells you how fast something was moving.
Weight – A literal value that amplifies or depresses its corresponding input. In other words; weight dictates how important it's corresponding input is. This is typically manipulated by the Genetic Algorithm.
Works Cited

Neural Networking and Genetic Algorithms:
http://www.ai-junkie.com/ga/intro/gat1.html
http://www.ai-junkie.com/ann/evolved/nnt2.html
Neuron Image[1][2][3]:
http://www.ai-junkie.com/ann/evolved/nnt2.html
Neuron Image[4][5]:
http://www.ai-junkie.com/ann/evolved/nnt3.html
Neuron Image[6][7]:
http://www.ai-junkie.com/ann/evolved/nnt4.html
Neuron Image[8][9][10]:
http://www.ai-junkie.com/ann/evolved/nnt5.html
Genetic Algorithm example quote[11]:
http://www.ai-junkie.com/ga/intro/gat3.html
2

